On the Approximation of Kernel Operators by Operators of Finite Rank

H. H. Schaefer and U. Schlotterbeck*

Mathematisches Institut, Universität Tübingen, 74 Tubingen 1, West Germany Communicated by P. L. Butzer

DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH BIRTHDAY

1. INTRODUCTION

In this paper we are concerned with linear operators from a space $L^{p}(\mu)$ into a space $L^{q}(\nu)$, representable by measurable kernels and satisfying certain special conditions originally defined and discussed by Hille and Tamarkin [5]. These operators can be viewed as generalizations of the Hilbert-Schmidt operators; they are known to form Banach spaces under a certain natural norm that coincides with the Hilbert-Schmidt norm if p = q = 2. Since a Hilbert-Schmidt operator can be approximated in the Hilbert-Schmidt norm by operators of finite rank, it is natural to ask if this situation extends to the case where the exponents p, q are distinct from 2. Obviously, certain extreme cases have to be excluded here: For example, if p = 1 and $q = \infty$, then any continuous linear map $L^{p}(\mu) \rightarrow L^{q}(\nu)$ has a kernel of the type we are considering, but such a map need not even be weakly compact. On the other hand, it is well known that the operators in question are compact for $1 < p, q < \infty$ (see, e.g., Luxemburg and Zaanen [7]), and results in the direction indicated have in fact been obtained under additional assumptions on p and q (Jörgens [6, Satz 11.6]). It is our aim to remove these assumptions, and to identify the Hille-Tamarkin operators from $L^{p}(\mu)$ into $L^{q}(\nu)$ with the elements of a completed normed tensor product of $L^{p'}(\mu)$ and $L^{q}(\nu)$ as defined in [9]. This implies, in particular, that (for $1 < p, q < \infty$) the space of Hille-Tamarkin operators $L^{p}(\mu) \rightarrow L^{q}(\nu)$ is a reflexive Banach lattice, with dual given by the Hille-Tamarkin operators $L^{p'}(\mu) \rightarrow L^{q'}(\nu)$, in complete analogy to the case p = q = 2.

* Support through N. S. F. Grant P3P15 12000 is gratefully acknowledged by both authors.

In the following, E will always denote the space $L^{p}(\mu)$ $(1 \leq p \leq \infty)$ constructed over a σ -finite measure space (X, Σ, μ) . Likewise, F denotes the space $L^{q}(\nu)$ $(1 \leq q \leq \infty)$ for a σ -finite measure space (Y, Ω, ν) . We denote by p', q' the conjugate exponents as usual. $\mathscr{L}^{r}(E, F)$ is the space of all orderbounded linear maps from E into F, which is a Banach lattice for the natural order and the r-norm $T \rightarrow ||T||_{r} = ||T||_{r}$ (see, e.g., [10]). An operator $T \in \mathscr{L}^{r}(E, F)$ is called a *kernel operator* if there exists a $\mu \otimes \nu$ -measurable function K(s, t) on $X \times Y$ such that for each $f \in E$, $s \rightarrow K(s, t)f(s)$ is μ -integrable for ν -almost every $t \in Y$, and $Tf(t) = \int K(s, t)f(s) d\mu(s)$ holds almost everywhere (ν) . We denote by \mathscr{A}_{pq} the vector space of all kernel operators $E \rightarrow F$. If $T \in \mathscr{A}_{pq}$ has the kernel K(s, t), then the function |K(s, t)|is a kernel for the modulus |T| (see [8] or [10]). Consequently, \mathscr{A}_{pq} is a Banach sublattice of $\mathscr{L}^{r}(E, F)$. An operator $T \in \mathscr{A}_{pq}$ is called a *Hille–Tamarkin* operator if

$$k(t) = \left(\int |K(s,t)|^{p'} d\mu(s)\right)^{1/p'},$$
(1)

(respectively, $k(t) = \sup \operatorname{ess}_s | K(s, t)|$ if p = 1) is finite almost everywhere (ν) and defines a function $k \in F$. \mathscr{H}_{pq} denotes the space of all Hille-Tamarkin operators from E into F. \mathscr{H}_{pq} is obviously a sublattice of $\mathscr{L}^r(E, F)$, and the function $T \mapsto || k(t) ||_q$ is a lattice norm on \mathscr{H}_{pq} . It is immediately clear that the kernel K(s, t) of an operator $T \in \mathscr{H}_{pq}$ defines a weakly ν -measurable map $t \mapsto g_t$, where $g_t(s) = K(s, t)$, from Y into $L^{\nu'}(\mu)$. If $1 < p, q < \infty$, we will show that this map is always ν -measurable, and actually contained in $L^q_H(\nu)$, where $H = L^{\nu'}(\mu)$.

2. VECTOR VALUED L^p -Spaces

In this section, G and H are arbitrary Banach lattices. As usual, $L_{H}^{p}(\mu)$ denotes the space of equivalence classes of μ -measurable functions $g: X \to H$ with $s \mapsto ||g(s)|| \in L^{p}(\mu)$. We want to identify $L_{H}^{p}(\mu)$ with a completed tensor product of $L^{p}(\mu)$ and H, and to determine the dual spaces $(L_{H}^{p}(\mu))'$. For this we need some definitions from [9]. In order to simplify the presentation, we will assume that H is the image of its second dual under a positive projection of norm 1 (see [9]).

A linear map T from G into H is called *majorizing* if for any null sequence $\{x_n\}$ in G the sequence $\{Tx_n\}$ is order bounded in H. If T is majorizing, then the image under T of the unit ball U_G of G is order-bounded in H, and the map $T \mapsto ||T||_m = || \sup\{Tx: x \in U_G\}|$ is a norm on the linear space $\mathscr{L}^m(G, H)$ of all majorizing maps $G \to H$. Under this norm and the natural order, $\mathscr{L}^m(G, H)$ is a Banach lattice and an ideal of $\mathscr{L}^r(G, H)$. Dually, we call an operator $T \in \mathscr{L}(G, H)$ cone absolutely summing (c.a.s.) if T maps positive,

summable sequences in G into absolutely summable sequences in H. The mapping $T \mapsto || T ||_{l} = \sup\{\Sigma || Tx_{n} ||: 0 \leq x_{n} \in G, || \Sigma x_{n} || \leq 1\}$ is a norm on the linear space $\mathscr{L}^{l}(G, H)$ of all c.a.s. maps $G \to H$ and under this norm and the natural order, $\mathscr{L}^{l}(G, H)$ is a Banach lattice and an ideal in $\mathscr{L}^{r}(G, H)$.

The preceding two classes of linear maps are dual to each other in the following sense: $T \in \mathscr{L}(G, H)$ is majorizing (c.a.s.) if and only if the adjoint $T' \in \mathscr{L}(H', G')$ is c.a.s. (majorizing), and then $||T||_m = ||T'||_l$ (respectively, $||T||_l = ||T'||_m$). Both $\mathscr{L}^m(G, H)$ and $\mathscr{L}^l(G, H)$ contain the operators of finite rank, and we denote by $G \otimes_m H$ the closure of $G \otimes H$ in $\mathscr{L}^m(G', H)$, while $G \otimes_l H$ denotes the closure of $G \otimes H$ in $\mathscr{L}^l(G', H)$. It turns out [9] that $G \otimes_m H$ and $G \otimes_l H$ are Banach sublattices of $\mathscr{L}^m(G', H)$ and $\mathscr{L}^l(G', H)$, respectively, and that $G \otimes_m H$ is isomorphic to $H \otimes_l G$ via the extension of the transposition map $x \otimes y \mapsto y \otimes x$. If G is a space $L^1(\mu)$, then the *l*-norm on $G \otimes H$ coincides with the π -norm (greatest crossnorm), hence $G \otimes_l H = G \otimes_\pi H$. Correspondingly, $G \otimes_m H = G \otimes_\pi H$ if H is a space $L^1(\nu)$. On the other hand, $G \otimes_l H = G \otimes_{\epsilon} H$ if G is a space C(Z) (continuous functions on the compact space Z with the sup-norm) and $G \otimes_m H = G \otimes_{\epsilon} H$ if H is a space C(Z), ϵ denoting the least crossnorm. We will need the following basic properties of the tensor products just defined:

PROPOSITION 1. The dual of $G \bigotimes_m H$ is canonically isomorphic (as a Banach lattice) to $\mathcal{L}^m(G, H')$, and $(G \bigotimes_l H)'$ is isomorphic to $\mathcal{L}^l(G, H')$. If G is a space $L^p(\mu)$ ($1 \le p < \infty$), then $G \bigotimes_l H$ can be canonically identified with the Banach lattice $L^p_H(\mu)$.

A proof can be found in [9], except for the last statement which was proved in [2]. The duality relations expressed in Proposition 1 can be further refined if G is a space $L^{p}(\mu)$ and if H is reflexive. We need the following Lemma which is due to Grothendieck [3]; a short proof can be found in [10].

LEMMA. Let J, K be Banach spaces, and let T be an integral linear map (in the sense of Grothendieck [3]) from J into K. If K is a separable dual or if K is reflexive, then T is nuclear.

THEOREM 1. Let (X, Σ, μ) be a σ -finite measure space, and suppose that H is a separable dual, or that H is reflexive. Then $\mathscr{L}^{\prime}(L^{\prime\prime}(\mu), H)$ is isomorphic as a Banach lattice to $L_{H}^{\mu'}(\mu)$ under the correspondence $T \mapsto g$ given by the identity of bilinear forms

$$\langle Tf, y' \rangle = \int f(s) \langle y', g(s) \rangle d\mu(s)$$
 (2)

on $L^p(\mu) \times H'$.

Proof. The general case can be reduced to the case of a finite measure

space by a standard procedure, so let us assume that $\mu(X) < \infty$. Let $T \in \mathscr{L}^{p}(L^{p}(\mu), H)$, and denote by T_{0} its restriction to $L^{\infty}(\mu)$. T_{0} is integral [9], hence nuclear by the Lemma, and since $T_0'(H')$ is contained in the band $L^1(\mu)$ of $L^{\infty}(\mu)'$, we conclude that $T_0 \in L^1(\mu) \bigotimes_{\pi} H$. Thus T_0 satisfies (2) for a unique $g \in L^1 \bigotimes_{\pi} H = L_{H^1}(\mu)$ and this representation extends to all of $L^p(\mu)$ by a continuity argument. Since g is automatically μ -measurable, it remains to show that the function $s = \sum \left[|g(s)| \right]$ is contained in $L^{p'}(\mu)$. For this, we first note that g(s) is contained in a separable subspace of H for μ -almost all $s \in X$. In fact, since T_0 is nuclear, there exists a closed separable subspace H_0 of H containing $T_0(L^{\alpha}(\mu))$. But T_0 is nuclear as a map into H_0 as well (we put $H = H_0$ if H is separable to begin with), and the uniqueness of the function g then yields the desired conclusion. Hence there exists a sequence $\{v_n\}$ contained in the unit ball of H' such that $|y| = \sup_{n \le y} \langle y, y_n \rangle$ holds for all $y \in H_0$. Now $\langle g(s), y_n' \rangle = (T'y_n')(s)$ for μ -almost every $s \in X$ and, since T'is majorizing, there exists a function $h \in L^{p'}$ such that $T'y_n'$ is contained in the interval [-h, h] of $L^{\mu'}$ for all $n \in \mathbb{N}$. Consequently, there exists a μ -null set N in X such that $\langle g(s), y_n' \rangle \leq |h(s)|$ for all s in the complement of N and for all n, hence $g \in L_{H}^{p'}(\mu)$. Finally, it is not hard to verify that the correspondence $T \rightarrow g$ just established defines an isomorphism of Banach lattices from $\mathscr{L}^{t}(L^{p}(\mu), H)$ onto $L_{H}^{p'}(\mu)$.

Remark. Of course, Theorem 1 remains true if H is only supposed to be a Banach space, except that $\mathscr{L}^{t}(L^{p}, H)$ and $L_{H}^{p'}$ do not carry a lattice structure in this case. For p = 1 and H a separable dual, Theorem 1 is the classical Dunford-Pettis Theorem (note that $\mathscr{L}^{t}(L^{1}(\mu), H) = \mathscr{L}(L^{1}(\mu), H)$). For 1 and <math>H separable and reflexive, the result (more precisely the coincidence of $(L_{H'}^{p})'$ and $L_{H}^{p'}$) can be found, e.g., in Bourbaki [1, Section 2, Exercise 21]. Chaney [2] showed that no separability assumptions are needed if H is reflexive.

The following is now an immediate consequence of Theorem 1 and Proposition 1.

COROLLARY. Let $E = L^{p}(\mu)$, $F = L^{q}(\nu)$ for σ -finite measures μ and ν , and let $1 < p, q < \infty$. Then $E \bigotimes_{m} F$ and $E \bigotimes_{l} F$ are reflexive Banach lattices with duals $E' \bigotimes_{m} F'$ and $E' \bigotimes_{l} F'$, respectively. In particular, $E' \bigotimes_{m} F = \mathscr{L}^{m}(E, F) = L_{E'}^{q}(\nu)$ and $E' \bigotimes_{l} F = \mathscr{L}^{l}(E, F) = L_{F}^{p'}(\mu)$.

3. APPLICATIONS

The connection between the operators in $\mathscr{L}^m(E, F)$ and the Hille–Tamarkin operators now becomes transparent: If $1 < p, q < \infty$, if $T \in \mathscr{L}^m(E, F)$, and if K(s, t) is the kernel of T, then T' is contained in $\mathscr{L}^l(F', E')$ with kernel

K(t, s), and the function g: $Y \rightarrow E'$ associated with T by Theorem 1 is given by

$$g(t)(s) = K(s, t),$$

hence $T \in \mathscr{H}_{pq}$. Conversely, if $T \in \mathscr{H}_{pq}$, then the function k of (1) is contained in L^{q} , hence $T \in \mathscr{L}^{m}(E, F)$ by definition. Moreover, it is clear that \mathscr{H}_{pq} thus becomes a normed sublattice of $\mathscr{L}^{m}(E, F)$, and the same is true for the remaining cases p, q = 1 or ∞ . Thus \mathscr{H}_{pq} , with its natural norm and order, is the normed sublattice of $\mathscr{L}^{m}(E, F)$ consisting of the majorizing kernel operators. We define \mathscr{J}_{pq} to be the space $\mathscr{L}^{l}(E, F) \cap \mathscr{I}_{pq}$ with the induced *l*-norm. Since \mathscr{A}_{pq} is a Banach space for the *r*-norm and since both the *m*-norm and the *l*-norm are greater than the *r*-norm, it is clear that \mathscr{H}_{pq} and \mathscr{J}_{pq} are Banach lattices $(1 \leq p, q \leq \infty)$. It follows from the definition of these spaces that $T \in \mathscr{H}_{pq}$ if and only if $T' \in \mathscr{J}_{q'p'}$, and that the respective norms of *T* and *T'* coincide. For the sake of completeness, we write down the explicit formulae for these norms, identifying an operator *T* with its kernel *K*: For $1 < p, q < \infty$,

$$\|K\|_{m} = \left[\int \left(\int |K(s,t)|^{p'} d\mu(s) \right)^{q/p'} d\nu(t) \right]^{1/q}$$
(3)

is the norm of $K \in \mathscr{H}_{pq}$, while for $K \in \mathscr{J}_{pq}$ the norm of K is given by

$$||K||_{l} = \left[\int \left(\int |K(s,t)|^{q} \, d\nu(t) \right)^{p'/q} \, d\mu(s) \right]^{1/p'}, \tag{4}$$

corresponding formulae holding if p = 1 and/or $q = \infty$. We summarize:

PROPOSITION 2. The spaces \mathscr{H}_{pq} of majorizing and \mathscr{J}_{pq} of c.a.s. kernel operators $L^{p}(\mu) \rightarrow L^{q}(\nu)$ are Banach lattices; for each pair (p, q), \mathscr{H}_{pq} is isomorphic to $\mathscr{J}_{q'p'}$ by transposition of kernels. If $q = p' < \infty$, then $\mathscr{H}_{pp'} = \mathscr{J}_{pp'} = L^{p'}(\mu \otimes \nu)$.

For p = q = 2, the space of Hilbert-Schmidt operators emerges as a special case. We note in passing that for $1 and <math>1 \leq q < \infty$ the compactness of the Hille-Tamarkin operators $L^{\nu}(\mu) \rightarrow L^{q}(\nu)$ is now an easy consequence of the decomposition properties of majorizing maps (see [9]) together with the fact that every AM-space has the Dunford-Pettis property [4]. Compactness of any $T \in \mathcal{J}_{pq}$ for $1 and <math>1 < q < \infty$ can be verified by a corresponding argument using the Dunford-Pettis property of AL-spaces. We point out that, incidentally, the Dunford-Pettis property is also the major tool in proving the Lemma preceding Theorem 1. The following is now our main result.

THEOREM 2. If
$$1 < p, q < \infty$$
 then $\mathscr{H}_{pq} := E' \widetilde{\otimes}_m F$ and $\mathscr{J}_{pq} = E' \widetilde{\otimes}_l F$

are reflexive Banach lattices with duals $\mathscr{H}_{\nu'q'} \to E \widetilde{\otimes}_m F'$ and $\mathscr{J}_{\rho'q'} = E \widetilde{\otimes}_l F'$, respectively. In particular, every majorizing (respectively, c.a.s.) linear operator $L^p(\mu) \to L^q(\nu)$ is a compact kernel operator and can be approximated in the m-norm (3) (respectively, in the l-norm (4)) by operators of finite rank.

The proof is readily obtained from Proposition 1 and Theorem 1 with its Corollary.

We briefly discuss some of the cases excluded in Theorem 2.

Case 1. If 1 and <math>q = 1, then every operator in $\mathscr{L}^m(E, F)$ is integral (see [9]), hence nuclear by the Lemma. Thus $\mathscr{L}^m(E, F) \longrightarrow \mathscr{H}_{p1} = E' \widetilde{\otimes}_{\pi} F$, with coincidence of the respective norms. Similarly, if $p = \infty$ and $1 < q < \infty$, then we have $\mathscr{L}^l(E, F) = E' \widetilde{\otimes}_{\pi} F$; however, $\mathscr{J}_{xq} = L^1(\mu) \widetilde{\otimes}_{\pi} F$ is the space of order continuous nuclear maps $L^{\alpha}(\mu) \to F$. On the other hand, an operator in \mathscr{H}_{xq} or \mathscr{J}_{p1} ($1 < p, q < \infty$) need not be compact, but one always has $\mathscr{H}_{xq} = \mathscr{J}_{xq}$ and $\mathscr{J}_{p1} = \mathscr{I}_{y1}$ in these cases.

Case 2. A situation of particular interest arises for $p = \infty$, q = 1. By Formulae (3) and (4) above we have $\mathscr{A}_{\tau_1} = \mathscr{H}_{\tau_1} - \mathscr{J}_{\tau_1} - L^1(\mu \otimes \nu) = L^1(\mu) \otimes_{\pi} F$. Hence every kernel operator $L^{\tau}(\mu) \to L^1(\nu)$ is nuclear.

Case 3. Finally, we consider the case p = 1 and $q = \infty$. Since $\mathscr{L}(L^1(\mu), L^{\alpha}(\nu))$ is canonically isomorphic with the space of continuous bilinear forms on $L^1(\mu) \times L^1(\nu)$ and the latter is the dual of $L^1(\mu) \widetilde{\otimes}_{\pi} L^1(\nu) = L^1(\mu \otimes \nu), \mathscr{L}(L^1(\mu), L^{\alpha}(\nu))$ is Banach lattice isomorphic to $L^{\alpha}(\mu \otimes \nu)$, the isomorphism being given by the formula

$$\langle Tf, g \rangle = \iint K(s, t)f(s)g(t) d\mu(s) d\nu(t) (f \in L^1(\mu), g \in L^1(\nu)).$$

Hence we have $\mathscr{H}_{1\infty} = \mathscr{J}_{1\infty} = \mathscr{L}_{1\infty} = \mathscr{L}(E, F)$. We point out that in the present circumstances it can happen that an operator $T \in \mathscr{L}(E, F)$ which is not even weakly compact, has a modulus |T| of rank 1.

REFERENCES

- 1. N. BOURBAKI, "Integration," Chapter 6, Hermann, Paris, 1959.
- 2. J. CHANEY, Banach lattices and compact maps, Math. Z. 129 (1972), 1-19.
- 3. A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, *Mem. Amer. Math. Soc.* 16 (1955).
- 4. A. GROTHENDIECK, Sur les applications faiblements compactes d'espaces du type C(K), *Canad. J. Math.* 5 (1953), 129–173.
- 5. E. HILLE AND J. D. TAMARKIN, On the theory of linear integral equations II, Annals of Math. 35 (1934), 445-455.
- 6. K. JÖRGENS, "Lineare Integraloperatoren," Teubner, Stuttgart, 1970.

- 7. W. A. J. LUXEMBURG AND A. C. ZAANEN, Compactness of integral operators in Banach function spaces, *Math. Ann.* 149 (1963), 150–180.
- 8. W. A. J. LUXEMBURG AND A. C. ZAANEN, The linear modulus of an order bounded linear transformation, *Indag. Math.* 33 (1971), 422-447.
- 9. H. H. SCHAEFER, Normed tensor products of Banach lattices, *Israel J. Math.* 13 (1972), 400–415.
- 10. H. H. SCHAEFER, "Banach Lattices and Positive Operators," Springer, Berlin-Heidelberg-New-York, 1974.