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l. INTRODUCTION

In this paper we are concerned with linear operators from a space L7(u)
into a space Li(v), representable by measurable kernels and satisfying certain
special conditions originally defined and discussed by Hille and Tamarkin [5].
These operators can be viewed as generalizations of the Hilbert-Schmidt
operators; they are known to form Banach spaces under a certain natural
norm that coincides with the Hilbert-Schmidt norm if p == ¢ = 2. Since a
Hilbert-Schmidt operator can be approximated in the Hilbert-Schmidt norm
by operators of finite rank, it is natural to ask if this situation extends to the
case where the exponents p, ¢ are distinct from 2. Obviously, certain extreme
cases have to be excluded here: For example, if p == | and ¢ = o0, then any
continuous linear map L#(u) — L%v) has a kernel of the type we are
considering, but such a map need not even be weakly compact. On the other
hand, it is well known that the operators in question are compact for
1 < p, g < oo (see, e.g., Luxemburg and Zaanen [7]), and results in the
direction indicated have in fact been obtained under additional assumptions
on p and ¢ (J6rgens [6, Satz 11.6]). It is our aim to remove these assumptions,
and to identify the Hille-Tamarkin operators from L#(u) into L*(v) with the
elements of a completed normed tensor product of L*'(p) and L%(v) as defined
in [9]. This implies, in particular, that (for 1 < p, ¢ < o) the space of
Hille-Tamarkin operators L”(n) — L“v) is a reflexive Banach lattice, with
dual given by the Hille-Tamarkin operators L?(u) -~ L7(v), in complete
analogy to the case p = g = 2.
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In the following, E will always denote the space L*(u) (I = p -+ )

constructed over a o-finite measure space (X, &, p). Likewise, F denotes the
space LUv) (1 =L g = oo) for a o-finite measure space (Y, £2, v). We denote

by p’, ¢’ the conjugate exponents as usual. Z7(E, F) is the space of all order-
bounded linear maps from E into F, which is a Banach lattice for the natural
order and the r-norm T — | T|, == | T | (see, e.g., [10]). An operator
Te #7(E F)is called a kernel operator if there exists a u (- v-measurable
function K(s,t) on X > Y such that for each fe E, s K(s, 1) f(s) is
p-integrable for v-almost every r€ Y, and Tf(¢t) = fK(s, 1) f(s) du(s) holds
almost everywhere (v). We denote by .7, the vector space of all kernel
operators £— F. If T e.+/,, has the kernel K(s, 7), then the function | K(s, 1)
is a kernel for the modulus | 7| (see [8] or [10]). Consequently, .7, is a
Banach sublattice of £7(E, F). An operator T € .«7,, is called a Hille-Tamarkin
operator if

N

k(o) = (] K6 dus)) (1)

(respectively, k(1) == sup ess, | K(s, 1) if p == 1) is finite almost everywhere (v)
and defines a function & € F. 5, denotes the space of all Hille-Tamarkin
operators from E into F. 5#,, is obviously a sublattice of #7(E, F), and
the function 7+ || k(1)], is a lattice norm on £, . It is immediately clear
that the kernel K(s, r) of an operator T € 3¢, defines a weakly v-measurable
map ¢ — g,, where g(s) = K(s, t), from Y into L*(pn). If | < p, ¢ < oo,
we will show that this map is always v-measurable, and actually contained
in L§(v), where H = L"(p).

2. VECTOR VALUED LP-SPACES

In this section, G and H are arbitrary Banach lattices. As usual, L} (p)
denotes the space of equivalence classes of u-measurable functions g: X — H
with 51— [| g(s)]l € L"(w). We want to identify L} () with a completed tensor
product of L™(u) and H, and to determine the dual spaces (L}, (n))'. For this
we need some definitions from [9]. In order to simplify the presentation, we
will assume that H is the image of its second dual under a positive projection
of norm 1 (see [9]).

A linear map 7 from G into H is called majorizing if for any null sequence
{x,} in G the sequence {7x,} is order bounded in H. If T is majorizing, then
the image under T of the unit ball U, of G is order-bounded in H, and the
map T | T||,, = | sup{Tx: x € Ug}| is a norm on the linear space (G, H)
of all majorizing maps G -- H. Under this norm and the natural order,
£L™G, H) i1s a Banach lattice and an ideal of #7(G, H). Dually, we call an
operator T € L(G, H) cone absolutely summing (c.a.s.) if T maps positive,
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summable sequences in G into absolutely summable sequences in 4. The
mapping 7~ || T, = sup{2{| Tx,|: 0 << x, € G, Xx, | << 1} is a norm on
the linear space LG, H) of all c.a.s. maps G — H and under this norm and
the natural order, LG, H) is a Banach lattice and an ideal in ¥7{(G, H).

The preceding two classes of linear maps arc dual to each other in the
following sense: T e (G, H) is majorizing (c.a.s.) if and only if the adjoint
T' < #(H’, G') is c.as. (majorizing), and then | T, = |'! T" [, (respectively,
' Tl =T, Both "G, H) and &'(G, H) contain the operators of
finite rank, and we denote by G X, H the closure of G &) H in #"™(G', H),
while G &, H denotes the closure of G &) H in ZYG’, H). It turns out [9]
that G (,, Hand G &, H are Banach sublattices of #"(G’, H)and .¥'(G', H),
respectively, and that G &, H is isomorphic to H (), G via the extension of
the transposition map x < v +> v 0 x. If G is a space L(u), then the -norm
on G &) H coincides with the 7-norm (greatest crossnorm), hence G -, H -
G 5. H. Correspondingly, G %, H - G >, H if H is a space L(v). On the
other hand, G &, H —~ G S HIFG s a space C(Z) (continuous functions
on the compact space Z with the sup-norm) and G &,, H = G &, H if H
is a space C(Z), € denoting the least crossnorm. We will need the following
basic properties of the tensor products just defined:

PrROPOSITION 1. The dual of G ., H is canonically isomorphic (as a Banach
lattice) to (G, H'), and (G &, H)' is isomorphic to LG, H'). If G is a
space L'{(p) (1 < p < ), then G 21 H can be canonically identified with the
Banach lattice Lj(p).

A proof can be found in [9], except for the last statement which was proved
in [2]. The duality relations expressed in Proposition | can be further refined
if G is a space L(p) and if H is reflexive. We need the following Lemma
which is due to Grothendieck [3]: a short proof can be found in [10].

LEmMmA,  Let J, K be Banach spaces, and let T be an integral linear map
(in the sense of Grothendieck [3)) from J into K. If K is a separable dual or if K
is reflexive, then T is nuclear.

THEOREM L. Let (X, 2, p) be a o~finite measure space, and suppose that H
is a separable dual, or that H is reflexive. Then L' (L"(w), H) is isomorphic as
a Banach lattice 1o L () under the correspondence T g given by the
identity of bilinear formns

T = [ Fls) 07 () dats) &)
on L"(p) =< H'.

Proof. The general case can be reduced to the case of a finite measure
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space by a standard procedure, so let us assume that p(X) << oo. Let
Te P (L"(w), H), and denote by T, its restriction to L*(p). T, is integral [9],
hence nuclear by the Lemma, and since T,/(H") is contained in the band L'(u)
of L*(u), we conclude that T, e LXu) &, H. Thus T, satisfies (2) for a
unique g€ L' &, H = Ly'(p) and this representation extends to all of £L/{p)
by a continuity argument. Since g is automatically u-measurable, it remains
to show that the function s - » | g(s) ' is contained in L*'(p). For this, we first
note that g(s) is contained in a separable subspace of H for p-almost all
s € X. In fact, since T, is nuclear, there exists a closed separable subspace H,
of H containing Ty(L*(u)). But T} is nuclear as a map into H, as well (we put
H - H,if His separable to begin with), and the uniqueness of the function g
then yields the desired conclusion. Hence there exists a sequence { v,"!
contained in the unit ball of H' such that !y = sup,- ». 1, holds for all
ye Hy. Now {g(s), ¥, > = (T'y,/)Ns) for p-almost every s € X and, since 7’
is majorizing, there exists a function /1 ¢ L such that 7'v," is contained in
the interval [/, ] of L" for all n = N. Consequently, therc exists a p-null
set NV in X such that {g(s), y,,/> = | h(s)| for all s in the complement of N and
for all n, hence g & Ly (p). Finally, it is not hard to verify that the corre-
spondence T -» g just established defines an isomorphism of Banach lattices
from £'(L"(p), H) onto L} (p).

Remark. Of course, Theorem | remains true if H is only supposed to be
a Banach space, except that #'(L*, H) and L}; do not carry a lattice structure
in this case. For p -- | and H a separable dual, Theorem 1 is the classical
Dunford--Pettis Theorem (note that Z'(L'(w), H) = L(LY(w), H)). For
| << p < o and H separable and reflexive, the result (more precisely the
coincidence of (L};.)" and L};) can be found, e.g., in Bourbaki [I, Section 2,
Exercise 21]. Chaney [2] showed that no separability assumptions are needed
if H is reflexive.

The following is now an immediate consequence of Theorem | and
Proposition 1.

COROLLARY. Let E == Lo(u), F = Li(v) for o-finite measures p and v.
and let V < p, ¢ ~Z oo, Then E &, Fand E &), F are reflexive Banach lattices
with duals E' 5, F and E' &, F', respectively. In particular, E' &, F -
PE,Fy = Li(v)and E' &, F = LUE, F) = LY ().

3. APPLICATIONS

The connection between the operators in ¥"(E, F) and the Hille~-Tamarkin
operators now becomes transparent: If | < p, g << o0, if T e £™(E, F), and
it K(s, t)is the kernel of T, then 77 is contained in Z{(F’, E’) with kernel
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K(t, 5), and the function g: ¥ — E"associated with 7'by Theorem 1 is given by

g(r)(s) — K(s, 1),

hence T e £, . Conversely, if T e 2, . then the function k& of (1) is contained
in L7, hence Te £"(E, F) by definition. Moreover, it is clear that 57, thus
becomes a normed sublattice of ¥"(E, F), and the same is true for the
remaining cases p, ¢ == 1 or . Thus 4, , with its natural norm and order,
is the normed sublattice of Z"(E, F) consisting of the majorizing kernel
operators. We define £, to be the space LUE, £}y N o/, with the induced
/-norm. Since .%7,, is a Banach space for the r-norm and since both the
m-norm and the /-norm are greater than the r-norm, it is clear that J#,, and
S, are Banach lattices (1 << p, ¢ =2 o). It follows from the definition of
these spaces that T e 4, if and only if T" € ¢, , , and that the respective
norms of 7 and T coincide. For the sake of completeness, we write down the
explicit formulae for these norms, identifying an operator T with its kernel K:
For | << p, g < o0,

alr

Kl = [J(J 1 &6 0 duto)) o] 5

is the norm of K € #,,, while for K e #,, the norm of K is given by

vl 1/p’
L= [(] 1K i) duts)] @
corresponding formulae holding if p = 1 and/or ¢ == oc. We summarize:

PROPOSITION 2. The spaces H,, of majorizing and J,, of c.a.s. kernel
operators LP(u) — LYv) are Banach lattices; for each pair (p,q), H,, is
isomorphic to Jy, by transposition of kernels. If g = p' < w0, then

‘%}p' = %ﬂp' = L’"(‘u ® V)~

For p = g = 2, the space of Hilbert-Schmidt operators emerges as a
special case. We note in passing that for [ << p < o and 1 =X ¢ << o the
compactness of the Hille-Tamarkin operators L"(x) — L“v) is now an easy
consequence of the decomposition properties of majorizing maps (see [9])
together with the fact that every 4 M-space has the Dunford—Pettis property
[4]. Compactness of any T'e 4, for | << p =l v and 1 < ¢ < o can be
verified by a corresponding argument using the Dunford-Pettis property of
AL-spaces. We point out that, incidentally, the Dunford-Pettis property is
also the major tool in proving the Lemma preceding Theorem 1. The following
is now our main result.

THEOREM 2. If'1 < p, ¢ << oo then H#,, -= E' (3, F and f,, = E &, F
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are reflexive Banach lattices with duals #,,, - E ), F and §,, = E &, F',
respectively. In particular, every majorizing (respectively, c.a.s.) linear operator
L*(u) —~ Lv) is a compact kernel operator and can be approximated in the
m-norm (3) (respectively, in the I-norm (4)) by operators of finite rank.

The proof is readily obtained from Proposition | and Theorem 1 with its
Corollary.
We briefly discuss some of the cases excluded in Theorem 2.

Case 1. 1 <<p < ow and ¢ =1, then every operator in £"(E, F)
1s integral (see [9]), hence nuclear by the Lemma. Thus Z"(E, F) 7,
E’ (0, F, with coincidence of the respective norms. Similarly, if p - o and
1 <2 ¢ < oo, then we have ZUE, F) - - E' (7, F:however, ., = LYp) 0, F

is the space of order continuous nuclear maps L“(p) —> F. On the other hand,
an operator in #,, or 4, {1 < p, ¢ < o) need not be compact, but one
always has #,, - .2, ,and J, - =/, In these cases,

Case 2. A situation of particular interest arises for p <. ¢ 1. By
Formulae (3) and (4) above we have «/,, -~ J#,, - 7., LY vy -
L) &, F. Hence every kernel operator L~ (u) -> L'(v) is nuclear.

Case 3. Finally, we consider the case p - | and ¢ -- oo, Since
L(LY ), L*(v)) is canonically isomorphic with the space of continuous
bilinear forms on L'(p) x LY(v)and the latter is the dual of L) L) ==
LYp tov), L(LYp), L=(v)) is Banach lattice isomorphic to L*(pu 1),
the isomorphism being given by the formula

Tfgr = [ | Kts, 00/ () 2t duts) dotn) (/& Lip). g & L),

Hence we have 5, = 4. = 4. — L(E, F). We point out that in the
present circumstances it can happen that an operator T« Z(FE, F) which is
not even weakly compact, has a modulus | 7! of rank I.
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