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I. II\TRODUCTION

In this paper we are concerned with linear operators from a space U'(p.,)

into a space U(v), representable by measurable kernels and satisfying certain
special conditions originally defined and discussed by Hille and Tamarkin [5].
These operators can be viewed as generalizations of the Hilbert-Schmidt
operators; they are known to form Banach spaces under a certain natural
norm that coincides with the Hilbert-Schmidt norm if p ~~, q= 2. Since a
Hilbert-Schmidt operator can be approximated in the Hilbert-Schmidt norm
by operators of finite rank, it is natural to ask if this situation extends to the
case where the exponents p, q are distinct from 2. Obviously, certain extreme
cases have to be excluded here: For example, if p = I and q = CXJ, then any
continuous linear map [i'(p.,) --)- U(v) has a kernel of the type we are
considering, but such a map need not even be weakly compact. On the other
hand, it is well known that the operators in question are compact for
1 < p, q < CXJ (see, e.g., Luxemburg and Zaanen [7]), and results in the
direction indicated have in fact been obtained under additional assumptions
on p and q (Jorgens [6, Satz 11.6]). It is our aim to remove these assumptions,
and to identify the Hille-Tamarkin operators from V'(p.,) into L'/(v) with the
elements of a completed normed tensor product of [i"(p.,) and U(v) as defined
in [9]. This implies, in particular, that (for I < p, q < CXJ) the space of
Hille-Tamarkin operators [i'(p.,) --)- U(v) is a reflexive Banach lattice, with
dual given by the Hille-Tamarkin operators [i)'(ft) -->- LQ'(v), in complete
analogy to the case p = q 2.
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In the following, E will always denote the space U(p.) (I P co)

constructed over a a-finite measure space (X, L, IL). Likewise, F denotes the
space L'I(v) (I q (0) for a a-finite measure space ( Y, Q, II). We denote
by p', q' the conjugate exponents as usual. gr(E, F) is the space of all order­
bounded linear maps from E into F, which is a Banach lattice for the natural
order and the r-norm T -+ Ti r IT; (sec, e.g., [10]). An opcrator
T E Sfr(E, F) is called a kernel operator if there exists a IL JI-measurable
function K(s, t) on X Y such that for each Ie. E, s·> K(s, t)j(s) is
p.-integrable for v-almost every t E Y, and Tj(t) JK(s, t)j(s) dp.(s) holds
almost everywhere (v). We denote by sl,," the vector space of all kernel
operators E -->- F. 1fT tee .el/lll has thc kernel K(s, t), then the function K(s, t) i

is a kernel for the modulus I T I (see [8] or [10]). Consequently, .dl"! is a
Banach sublattice of gT(E, F). An operator T E .c/pq is called a Hi//e- Tamark in
operator if

( I )

(respectively, k(t) =c sup ess, I K(s, t) ifpI) is finite almost everywhere (v)

and defines a function keF. YC'pq denotes the space of all Hille-Tamarkin
operators from E into F. ~)q is obviously a sublattice of gr(E, F), and
the function T f-+ 11 k(t)[[q is a lattice norm on YfI)q. It is immediately clear
that the kernel K(s, t) of an operator T E YC'r)q defines a weakly v-measurable
map t f-+ gt, where gt(s) == K(s, t), from Y into U'(p.). If I < p, q < 00,

we will show that this map is always v-measurable, and actually contained
in L'i£(v), where H = U'(p.).

2. VECTOR VALUED LP-SPACES

In this section, G and H are arbitrary Banach lattices. As usual, L};(p.)
denotes the space of equivalence classes of p.-measurable functions g: X -+ H
with s f-+ [I g(s)l[ E U(p.). We want to identify L};(p.) with a completed tensor
product of U(p.) and H, and to determine the dual spaces (LJ;(p.»). For this
we need some definitions from [9]. In order to simplify the presentation, we
will assume that H is the image of its second dual under a positive projection
of norm I (see [9]).

A linear map T from G into H is called majorizing if for any null sequence
{xn } in G the sequence {TXt.} is order bounded in H. If Tis majorizing, then
the image under T of the unit ball Ur; of G is order-bounded in H, and the
map T i-+ [I T 11m ~= I[ sup{Tx: X E Udl is a norm on the linear space .2?"'(G, H)
of all majorizing maps G -+ H. Under this norm and the natural order,
Sf"'(G, H) is a Banach lattice and an ideal of SfT(G, H). Dually, we call an
operator TE 2'(G, H) cone absolutely summing (c.a.s.) if T maps positive,
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summable sequences in G into absolutely summable sequences in H. The
mapping T c-+ Till = sup{L'11 TX n I: 0 Xn t= G, 'I LXn I' I} is a norm on
the linear space !f!1(G, H) of all c.a.s. maps G ->- H and under this norm and
the natural order, !f!1(G, H) is a Banach lattice and an ideal in !f!r{G, H).

The preceding two classes of linear maps are dual to each other in the
following sense: TE .P(G, Ii) is majorizing (c.a.s.) if and only if the adjoint
T' EP( H', G') is c.a.s. (majorizing), and then :, T'l1II c~c T' III (respectively,
i TI,i= il T' jllll)' Bothplll(G, H) and :fJI(G, H) contain the operators of
finite rank, and we denote by G Ii the closure of G H in !f'II/(G', H),
while G H denotes the closure of G H in 'p1(G', H). It turns out [9]
that G Hand G 11 are Banach sublattices of 'p1II(G', H) and .'f'(G', H),
respectively, and that G H is isomorphic to H G via the extension of
the transposition map x v 1-->- Y x. If G is a space [I(/L), then the I-norm
on G H coincides with the 7T-norm (greatest crossnorm), hence G H
G II. Correspondingly, G H G Ii if H is a space [1(1'). On the
other hand, G {X), H G HiI' G is a space C(Z) (continuous functions
on the compact space Z with the sup-norm) and G Hcc G H if H
is a space C(Z), E denoting the least crossnorm. We will need the !'ollowing
basic properties of the tensor products just defined:

PROPOSITION I. The dual olG Il is canonically isomorphic (as a Banach
lattice) to 'p'"(G, H'), and (G Ill' is isomorphic to 2 '(G, H'). Il G is a
space [1'( fL) (I p < ::0), then G Ii can be canonically identified !fith the
Banach lattice Lj'r(fL).

A proof can be found in [9], except for the last statement which was proved
in [2]. The duality relations expressed in Proposition I can be further refined
if G is a space V'(fL) and if H is reflexive. We need the following Lemma
which is due to Grothendieck [3]; a short proof can be found in [10].

LEMMA. Let J, K be Banach spaces, and let T be an integral linear map
(in the sense of Grothendieck [3])/rom J into K. If K is a separable dual or ifK
is reflexive, then T is nuclear.

THEOREM I. Let (X, l;, IL) be a ajinite measure space, and suppose that H
is a separable dual, or that H is reflexive. Then 'p1(LI'(fL), H) is isomorphic as
a Banach lattice to Lj: (fL) under the correspondence T i->- g given by the
idenfitl' 0/ bilinear forms

<Tj: ~~ Jf(s) (v', g(s) dfL(s) (2)

on U(fL) :< H',

Proof The general case can be reduced to the case of a finite measure
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space by a standard procedure, so let us assume that fL(X) < ro. Let
TE 2"(U(fL), H), and denote by To its restriction to ['(fl'} To is integral [9],
hence nuclear by the Lemma, and since To'(H') is contained in the band V(fL)

of U~(fL)', we conclude that T;) E V(fL) H. Thus To satisfies (2) for a
unique gEL' H L Hl(fL) and this representation extends to all of L"(fL)

by a continuity argument. Since g is automatically fL-measurable, it remains
to show that the function s ~ I, g(s) is contained in U·([t). For this, we first
note that g(s) is contained in a separable subspace of H for fL-almost all
SEX. In fact, since To is nuclear, there exists a closed separable subspace Ho
of H containing 7~J(U(fL))' But To is nuclear as a map into H o as well (we put
H H o if H is separable to begin with), and the uniqueness of the function g

then yields the desired conclusion. !-lence there exists a sequence {Yi/'
contained in the unit ball of H' such that .I' sup" y, YII holds for all
y E Ho . Now g(s), y,,') (T'y,,')(s) for Ihllmost every SEX and, since T'
is majorizing, there exists a function h c 1/ such that T'l'" , is contained in
the interval [--h, h] of L" for all n ( N. Consequently, there exists a fL-nuli
set N in X such that <g(s), Yn ! h(s)1 for all s in the complement of Nand
for all n, hence g (= LJ~'(fL)' Finally, it is not hard to verify that the corre­
spondence T -+ g just established defines an isomorphism of Banach lattices
from :£'(U(fl.), H) onto LJ~·(ft).

Remark. Of course, Theorem I remains true if H is only supposed to be
a Banach space, except that :£'(U, H) and LJ~' do not carry a lattice structure
in this case. For p • - I and H a separable dual, Theorem I is the classical
Dunford··Pettis Theorem (note that :£'(L1(/<), H) 2'(U(ft), H». For
I < p < UJ and H separable and reflexive, the result (morc precisely the
coincidence of (LJ~,)' and LJn can be found, e.g., in Bourbaki [1, Section 2,
Exercise 21]. Chaney [2] showed that no separability assumptions are needed
if H is reflexive.

The following is now an immediate consequence of Theorem I and
Proposition I.

COROLLARY. Let E L"(fl;), F L"(I') fin ajinite measures ft and '",
and let I p, q UJ. Then £ F and E (';)( F are reflexive Banach lattices
with duals £' r20", F' and £' F', respectively. In particular, £' F
!f;'1II(E, F) =~ L~.(v) and E' F= /£/(£, F) Uj'(ft).

3. ApPLICATIO:-;S

The connection between the operators in (.["'(£, F) and the Hille-·Tamarkin
operators now becomes transparent: 1f I p, q < 00, if T E 2'm(E, F), and
if K(s, t) is the kernel of T, then T' is contained in !f;'1(F', E ') with kernel
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K(t, s), and the function g: Y -* E' associated with Tby Theorem 1 is given by

g(t)(s) -~ K(s, t),

hence T E yt'pq . Conversely, if T E Yfpq • then the function k of (J) is contained
in U, hence T E 2'''(E, F) by definition. Moreover, it is clear that :/t,'o thus
becomes a normed sublattice of :/""( E, F), and the same is true for the
remaining cases p, q 1 or CfJ. Thus :/t"q , with its natural norm and order,
is the normed sublattice of 2"'(E, F) consisting of the majorizing kernel
operators. We define ~,q to be the space .:£/(E, F) n .dpq with the induced
I-norm. Since d pq is a Banach space for the r-norm and since both the
m-norm and the I-norm are greater than the r-norm, it is clear that :/t"q and
clpq are Banach lattices (l p, q ·N). It follows from the definition of
these spaces that T E :/t"q if and only if T' E f,z' p' , and that the respective
norms of T and T' coincide. For the sake of completeness, we write down the
explicit formulae for these norms, identifying an operator T with its kernel K:
For 1 <: p, q <: CfJ,

is the norm of K E Yfpq , while for K E Jp" the norm of K is given by

[f(f )
P'/'1 JI/P'I! Kil = • i K(s, t)1" dv(t) dp.(s) ,

(3)

(4)

corresponding formulae holding if p = I and/or q ~= CfJ. We summarize:

PROPOSITION 2. The spaces Yfpq of majorizing and clpo of c.a.s. kernel
operators V'(p.) ->- Lq(v) are Banach lattices; for each pair (p, q), yt'pq is
isomorphic to ~'p' by transposition of kernels. II' q = p' <: CXJ. then
yC, - I1i' • --- I "'(II. v)dt j )]) --~ (f PV --- oJ r .

For p = q = 2, the space of Hilbert-Schmidt operators emerges as a
special case. We note in passing that for 1 < p < CfJ and I q <: CfJ the
compactness of the Hille~Tamarkin operators V'(p.) ---+ L"(v) is now an easy
consequence of the decomposition properties of majorizing maps (see [9])
together with the fact that every A M-space has the Dunford-Pettis property
[4]. Compactness of any T E clpq for I <: P CfJ and 1 <: q <: 'Xl can be
verified by a corresponding argument using the Dunford-Pettis property of
AL-spaces. We point out that, incidentally, the Dunford-Pettis property is
also the major tool in proving the Lemma preceding Theorem 1. The following
is now our main result.

THEOREM 2. If 1 <: p, q <: CXJ then Yt'"q 0= E' F and ,7po = E' F
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are reflexive Banach lattices with duals :/tv',,' E F' and fp'II'= E F',
respectively. In particular, every majorizing (respectil'ely, c.a.s.) linear operator
VJ(p..) + ['1(F) is a compact kernel operator and can he approximated in the
m-norm (3) (respectively, in the I-norm (4» by operators ojjinite rank.

The proof is readily obtained from Proposition I and Theorem I with its
Corollary.

We briefly discuss some of the cases excluded in Theorem 2.

Case l. jf I p 00 and q I, then every operator ll1'f" l
( E, F)

is integral (see [9]), hence nuclear by the Lemma. Thus 2""'( E. F) y'{;'1

E' F, with coincidence of the respective norms. Similarly, if p x and
1 q 00, then we have if/(E, F) E' F: however, q V(p..) F
is the space of order continuous nuclear maps ["(/1.) -)- F. On the other hand,
an operator in y'{J([ or fIJI (1 p, q eI~) need not be compact, but one
always has 01(;" " and fiJI .o.lld in these cases.

Case 2. A situation of particular interest arises for PelJ, q I. By
Formulae (3) and (4) above we have d'l 01(, I f'l U(p.. v)

U(p..) F. Hence every kernel operator L'(p..) -~ LI(F) is nuclear.

Case 3. Finally, we consider the case p I and q
2'(U(p..), U(F) is canonically isomorphic with the space of
bilinear forms on V(p..) >< U(v) and the latter is the dual of L 1(/1.)

U(p.. F), !f(V(p..), L'(F)) is Banach lattice isomorphic to
the isomorphism being given by the formula

ele. Since
continuous

Ll(F)

L' (,t F),

Hence we have jt;.,) fIJ-'~,,'f(E, F). We point out that in the
present circumstances it can happen that an operator T r=Y)( E, F) which IS

not even weakly compact, has a modulus! T of rank I.
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